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THE USE OF THE GOVERNING EQUATIONS

IN DIMENSIONAL ANALYSIS

This paper develops the idea that the most effective use of dimen-
sional analysis in fluid wmechanics is to combine it with the known

mathematical form of the governing equations. It ie shown that additional

information can frequently be obtained in this way, especially when physi-

cal approximations can be reasonably made,



THE USE OF THE GOVERNING EQUATIONS

IN DIMENSIONAL ANALYSIS

L.  Introduction

Oneé of the nice things about the science of fluid mechanics is that
wé have a very good idea of the mathematical form of the equations that
govern our problems even in very complicated cases; for example, problems
of heat convection. The task of sSolving thése equations is a severe one,
of course; and as a result we do as other scientists in othe¥ fields and
resoft to approximation and eéxperiment. But whichever we do, we find
that a reasoning process; called dimensional analysis, is useful not only
t6 guide us in our tasks but, frequently; to give us difectly answers to
some of the questions that face us. For example, it is convenient for
experimental purposes to know that the drag on a body in a stream of
fluid of speed u has the form

F = pu*f(Re)
vhere p is the density and Re is the Reynolds number. It is also in-
formative to have this product of dimensional reasoning., For example,
it tells us that in two different fluids of the same kinematic viscesity,
the drag is proportienal to the density.

But the theme of this paper is not that dimensional analysis is
convenient and informative both for the experimenter and the theoreticianm,
although this is both true and important. Rather, the theme is that when
we know the mathematical form of our governing equations, we should ex-

ploit this fact not only by searching for solutions to these equations,
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but also by incorporating as much as poésible of this knowledge of our
equations into the reasoning process of dimensional analysis.

2, Generalized dimensfonal analysis

I fllustrate these remarks by the problem from elementary mechanics
of finding the range of & projectile (Fig. 1).
y

The problem is completely defined by the set of equations and conditioms.
d°x x(0)=0
dt® _
y(0) =0

d*y at y=0, x=R @

y(()) =V

Obviously the range R depends only on u, v, g, and, using the physi-

cal dimensions of these 4 quantities, the wx-theorem (Bridgman, 1931)

yields

_ut oy 2)



On theée other hand, let ws allow all the quantities that enteér the system
(1) to have arbitrary dimensions. For example, let the dimension 6f x be

A, the dimension of y be B, etc. Symbolically we wiite,

[x] =A, [ t ] =C, [ v ] =E, [ R] =6

Now require that all equations in (1) be dimensionally homogenmeous, for

example I?} *fﬁR},*e@c; The resulting felationships among A; B, etc.,

lead to £ .

Hence the four quantities R, u, v, g have three dimensions, A, B, €, in=-
stead of the two physical dimensions L and T, and the s-theorem yields
Rg

] ¢ 3)

where K is a nondimensional constant. Equation (3) is much more informa-
tive, of course, than equation (2). In fact (3) shows that the function

F, which is arbitrary in equation (2), must have the form

f( u y=K m %)

This example illustrates the power of generalized dimensional analy-

*
sis. The equations of Newton were set up with an arbitrary choice of

units of mass, length and time. These can always be altered at will

*A ——a —
Further generalization is possible (Long, 1963; Birkhoff, 1950).

d



without changing the form of the equations, and the techniques of ordi-
nary dimensional analysis in mechanics are simply reflections of this
fact. But a8 we see in the above example;, we do ourselves an injustice
if we ignere other information dbout the mathematical nature of our laws,

3. Physical approximations and generalized dimensional analysis

Very frequeéntly a genmeralized dimensional analysis such as that
than the ordinary analysis with its fundamental units of mass, length
and time. Yet it also happens frequently that the combination of general-
ized dimensional analysis with the physical process of approximation is
more informative. Suppose, for example; we are interested in the steéady

flow of an incompressible, viscous fluid over a half-infinite plate as

y

Fig. 2
shown in Figure 2. With the choice of axes as shown, the problem is

probably determined by the following set of equations and conditions:



vy, + vu, !

y =5 P +vlu,+u) (5) ’

. TR }i: i i 3 L6
uv, + v, P Py,+ v (vm + vw)

u v, <0 @

Equation (7) shows that we may introduce a streamfunction \9 such that
u = "’\.l"y » VEVY, 9)

The equations in (9) can be used to replace equation (7).

Obviously
V=t (x,y;v, U} (10)

and ordinsry dimensional analysis shows that 7 takes the form

(11)

Furthermore, we may perform a generalized dimensional analysis of the
system of equations (5), (6), (8) and (9) as in Section 2, and we find .

that we are led precisely to equation (1l) again. But suppose that we

allow ourselves to use the physical arguments of Prandtl (Goldstein, 1938)
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a that when the viscosity 48 very small the influence of the plate is
limited to a very thin layer in the immediate viecinity of the plate. It
is then evident that changes in velocity in directions normal to the plate
ate very much greater than changes in the direction of the platé. To use
this reasonable conjecture; we first crosssdifferentiate equations (5)
and (6) to eliminate the pressure terms and we then introduce the streams=
function. The governing equations and conditions are now

=¥ (Wenx F 2¥xyy + Vyyyy !

Now, with the assumption,

(14)

the governing equations and conditions take the form

Wy Yyt ¥ Wy T ¥y as)

Atx>0, y=0, ¥y =¥y =0, As y—@©, ‘Py -~y (16)

We now perform a generalized dimensional analysis of this system, by
assigning arbitrary dimensions to all quantities, requiring only that

all terms in all equations have the same dimensions. Ihu’sx?, let
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tentatively:. Then (I5) and (16) require

BC' T ¢

Therefore,

v1* 7B
-8 [u]-%&
C

‘.-'é‘, ,
Rpiiiiamid
i}

sy,
"

We now have three fundamental units, A, B, C, instead of two, L and T,

and if we now apply the n-theorem to (10) we get

(18)

instead of the less informative (11). With the new independent variable,

(19)

the partial differential equation (15) reduces to an ordinary differential

equation in the single independent variable 7 - The problem can then

be solved numerically.

ri. (i7)
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4. Model of air flow over a mountain

To illustrate the application of the above discussions to the model-
ing problem; we consider the problem of modeling air flow over a mountain
barrier. Using arguments (Long, 1959) which do not concern us here, we
may show that for certain purposes a reasonably accurate governing differ-
ential equation is

awt T ay' +o'(y,~y)=0 (20)

where y_ is the height far upstream (where the disturbance vanishes) of
the streanline through the point (x, y), and ¢ is a constant involving
gravity, density stratification, and upstream véloecity. It is also known
that the motion is determined by the Kinematic conditions at the “top"
and bottom of the atmosphere and by the upstream conditions. Suppose,

for simplicity, we take the model to be flow between two parallel, hori-
zontal surfaces separated by a distance h, and over a rectangular obstacle

of width b, height a at the bottom. Then we have

Yo=h At y=h

yo=0 At y'=,~0’: xs__g_

Yo =0 At y=0, x 2 Z (21)

Yo =0 At y=a, -5 sxs -3

The condition that the disturbance vanish upstream is

af
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Equations (20), (21) and (22) constitute @ completely stated mathe=
matical problem. If, however, it is too difficult to be solved; we may
very well reso¥t to experimentation (i.e., modeling). Since there is
only one dimension, léngth, in this problem, ordinary dimensional analy-
8is yields

and we find that we must have equal values of a/h, b/h, G,th if we are

to have similar phenomena in any two experiments, or in model and proto-
type.

1f we perform a generalized dimensional analysis of the problem,
we find that we get the same result as in Eq. (23); but suppose condi=
tions are such that the variations in the flow pattern are very gradual
in the horizontal direction; compared to the vertical direction, i.e.,

suppose

azz : a 2
v ": —
ox®  oy*

Then we have conditions (21) and (22) but the governing differential

equation is

A generalized dimensional analysis now yields

—I? = f (-{T J '%" '%, o¥ht )

and we find that we have similar phenomena by demanding equality of
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only two parameters; a/h and ﬂ%hz, instead of three. The experimental
advantages afe very great of course, since mich less experimentation is

fiow necessary to explore the full range of "long-wave' patterns.



